大家好,今天小编来为大家解答中点四边形这个问题,四边形 什么叫做四边形很多人还不知道,现在让我们一起来看看吧!
一、四边形包括什么图形
平行四边形,长方形,正方形,梯形,菱形等等。
1、平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
2、长方形,数学术语,是有一个角是直角的平行四边形叫做长方形。也定义为四个角都是直角的平行四边形,同时,正方形是一种特殊的长方形,也是菱形。
3、正方形:是特殊的平行四边形之一。即有一组邻边相等,并且有一个角是直角的平行四边形称为正方形,又称正四边形。
4、梯形:是只有一组对边平行的四边形。平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。
5、菱形:在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。
四边形不具有三角形的稳定性,易于变形。但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。
二、什么叫做四边形
四边形是由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形。
四边形由凸四边形和凹四边形组成。顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。
四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边均在其同侧。平行四边形(包括:普通平行四边形,矩形,菱形,正方形)。梯形(包括:普通梯形,直角梯形,等腰梯形)。凸四边形的内角和和外角和均为360度。
凹四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边有些在其异侧。依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
中点四边形的形状取决于原四边形的对角线。若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
参考资料来源:百度百科—四边形
三、什么是四边形,长方形是不是四边形
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。长方形是四边形。
长方形,数学术语,是有一个角是直角的平行四边形叫做长方形。也定义为四个角都是直角的平行四边形,同时,正方形既是长方形,也是菱形。
长方形的性质:两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。
1、凸四边形。四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边均在其同侧。
平行四边形(包括:普通平行四边形,矩形,菱形,正方形)。
梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和和外角和均为360度。
2、凹四边形。凹四边形四个顶点在同一平面内,对边不相交且作出一边所在直线,其余各边有些在其异侧。
四、四边形的定义是什么
四边形的定义:由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。
四边形不具有三角形的稳定性,易于变形。但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。
连接四边形任意两个不相邻顶点的线段是四边形对角线。四边形面积等于两条对角线的积的一半。对角线垂直的特殊四边形有:菱形、正方形、特殊梯形。
1、圆形:包括正圆,椭圆,多焦点圆——卵圆。
2、多边形:三角形、四边形、五边形等。
3、弓形:优弧弓、劣弧弓、抛物线弓等。
4、多弧形:月牙形、谷粒形、太极形、葫芦形等。
几何图形的应用非常广泛,无论在设计、绘画创作、数学研究中都需要借助几何图形进行。
数学定义、定理等用数学语言叙述起来很抽象,记住定理有一定难度,因此帮助学生记住定义定理是教学中一个重要环节。若在教学中恰当地借助几何图形,数形结合,使学生对直观图形加深理解以掌握其定理。
参考资料来源:百度百科——四边形
中点四边形和四边形 什么叫做四边形的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!
标签: 四边形