各位老铁们好,相信很多人对等边三角形的性质和判定都不是特别的了解,因此呢,今天就来为大家分享下关于等边三角形的性质和判定以及等边三角形的判定 等边三角形证明条件的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!
一、等腰三角形判定 等边三角形判定
先说等腰三角形,简单来说,有两边相等的三角形就叫等腰三角形。在等腰三角形中,相等的两等腰三角形条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:
在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
显然,以上三条定理是“三线合一”的逆定理。
有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
有两边相等且有一个角的度数是60度的三角形是等边三角形。
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8.等腰三角形中腰长的平方等于高的平方加底的一半的平方(勾股定理)
直接的关系是:腰大于高。间接的关系是:腰的平方等于高的平方加底的一半的平方。
等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。
(1)三边相等的三角形是等边三角形(定义)。
(2)三个内角都相等的三角形是等边三角形。
(3)有一个内角是60度的等腰三角形是等边三角形。
(4)两个内角为60度的三角形是等边三角形。
说明:可首先考虑判断三角形是等腰三角形。
提示:【1】三个判定定理的前提不同,判定(1)和(2)是在三角形的条件下,判定(3)是在等腰三角形的条件下。【2】判定(3)告诉我们,在等腰三角形中,只要有一个角是60度,不论这个角是顶角还是底角,这个三角形就是等边三角形。
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
(2)等边三角形每条边上的中线、高线和角平分线互相重合(三线合一)
(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或角的平分线所在的直线。
(4)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
(5)等边三角形内任意一点到三边的距离之和为定值(等于其高)
(6)等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)
二、证明等边三角形的方法有几种
证明全等三角形的方法有五种,有边边边、边角边、角角边、角边角、HL这五种方法。
1、边边边(SSS):三条边对应相等的两个三角形全等。
2、边角边(SAS):两条边和它们的夹角对应相等的两三角形全等。
3、角角边(AAS):两个角和一条边对应相等的两三角形全等。
4、角边角(ASA):两个角和它们的夹边对应相等的两三角形全等。
5、HL:直角三角形中,斜边和一条直角边对应相等的两三角形全等。
三、等边三角形的判定方法五种
1、等边三角形的判定方法五种如下:
2、三边相等的三角形是等边三角形。等边三角形拥有等腰三角形的一切性质。
3、三个内角都相等的三角形是等边三角形。等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或角的平分线所在的直线。
4、有一个内角是60度的等腰三角形:
5、因为等边三角形是特殊的等腰三角形。一个内角是60,那么剩下的120度,因为是等腰三角形,所以两个角是相等的,就是120除以2,每个角都是60度,那么就是等边三角形。
6、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
7、三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。按角分有直角三角形、锐角三角形钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
8、在同一平面内,由不在同一条直线的三条线段首尾相接所得的封闭图形。三角形三个内角的和等于180度。三角形任何两边的和大于第三边。三角形任意两边之差小于第三边。三角形的外角等于与它不相邻的两个内角的和。
四、证明两个三角形全等的条件有哪些
根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。
经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。全等三角形是几何中全等之一。
3、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角的角平分线相等。
6、全等三角形的对应边上的中线相等。
8、全等三角形的对应角的三角函数值相等。
参考资料来源:百度百科——全等三角形
等边三角形的性质和判定的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于等边三角形的判定 等边三角形证明条件、等边三角形的性质和判定的信息别忘了在本站进行查找哦。